
An Improved Multi-Level Raytracing Algorithm

Joshua Barczak

Figure 1: Renderings of our test scenes. On average, our method eliminates 6%, 69%, 63%, and 56% of BVH traversals for these scenes.

Abstract

Previous work has used entry point search (EP search) to accelerate
raytracing by avoiding redundant traversal of nodes in a KD tree.
EP search works by identifying a node which may be used as a
starting point for tracing a particular group of coherent rays, thus
bypassing all nodes above it. This is most effective when all rays
can be shown to be occluded, since a leaf or low inner node can
often be used as the entry point. Unfortunately, occlusion detection
is difficult in scenes with complex geometry, and is particularly dif-
ficult for BVH data structures, for which ordered traversal cannot
be guaranteed. If occlusion cannot be considered, EP search alone
becomes considerably less effective. We present an alternative to
EP search which eliminates traversals above and below the entry
point node. Compared to EP search, our method has a similar run-
time cost, generally eliminates more nodes, never eliminates fewer
nodes, and is more effective in the absence of occlusion. Although
designed for BVHs, our algorithm can be easily applied to other
tree structures.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism, Ray Tracing—; I.3.3 [Graphics Systems]:
Picture/Image Generation Display algorithms—;

Keywords: Ray Tracing, Frustum Culling, Entry Point Search,
Path Compression

1 Introduction

Raytracing is a very important technique in computer graphics,
which has seen a surge of exciting research activity in recent years.
It provides a framework for simulating many diverse visual phe-
nomena, and it can easily accomodate a wide variety of surface
representations. The fundamental operation in raytracing is deter-
mining the first intersection point between a ray and a geometric
primitive in a 3D scene. This is often done by traversing a hierar-
chical data structure containing the scene geometry. Raytracing in
this manner scales logarithmically with scene complexity, making
it a favorable choice for rendering scenes containing large numbers
of primitives.

Wald et al. [2001; 2003] introduced the use of SIMD instructions
to simultaneously trace multiple rays through a KD tree, which
made interactive raytracing feasible on multi-processor desktop
machines. Subsequent work [Dmitriev et al. 2004; Reshetov et al.
2005; Boulos et al. 2006; Wald et al. 2007] yielded a rich class
of packet tracing techniques, whereby coherent groups of rays are
simultaneously traversed through an acceleration structure. In addi-
tion to the use of SIMD instructions to vectorize calculations, cur-
rent techniques employ packet-level tests to eliminate calculations,
which are often most effective when applied to packets much larger
than the SIMD width.

Whereas packet tracing seeks to amortize or cull ray-level opera-
tions, a more recent idea is to cull packet-level calculations using a
pre-pass through the tree. This was introduced in the form of en-
try point search, (EP search) [Reshetov et al. 2005], and the basic
idea is to start traversal at a node other than the root, thus traversing
fewer nodes. Our work began as an attempt to apply this idea to
BVH data structures, but has resulted in an entirely different, and
more effective algorithm.

2 Prior work

Although KD-trees [Fussell et al. 1988] were the preferred raytrac-
ing data structure in earlier times, the bounding volume hierarchy
or BVH [Rubin and Whitted 1980] has become increasingly pop-
ular. Recent results demonstrate that BVH packet tracing acheives
comparable performance to a KD-tree, and is much more flexible
in its ability to handle dynamic scenes [Wald et al. 2007; Lauter-
bach et al. 2006; Yoon et al. 2007]. Packet traversal schemes for
BVHs were presented by Wald et al. [2007] and Lauterbach et al.
[2006] at roughly the same time. Although BVH traversal requires
more computation at each node, the trees generally are shorter and
contain fewer nodes than the equivalent KD trees. A key drawback
of a BVH is that the possibility of overlapping bounding volumes
makes it is impossible to guarantee that the first intersection point
that is found is the first one struck by the ray.

Reshetov et al. [2005] introduced entry point (EP) search, which is
a very important precursor to our work. EP search uses the bound-
ing frusta for large groups of rays in order to locate an entry point
node, which is then used as a starting point for tracing the rays in
the tile. The node selected as the entry point is the lowest common
ancestor of all (non-empty) leaf nodes which are intersected by the
bounding frustum. By starting traversal at this node, traversal cal-
culations on its ancestors can be avoided.

Quite recently, Fowler et al. [2009] proposed a modification to EP
search in which the candidate entry points are collected into a queue
and then tested in top-down, rather than bottom-up order. This re-

duces the number of nodes visited while locating the entry point,
while still returning the same answer (given the same set of visited
leaves).

Havran and Bitner [2000] used a longest common traversal se-
quence (LCTS), which is a list of non-empty leaf nodes in a BSP
tree which are always traversed in the same order by all rays in a
frustum. Rays are tested against the LCTS first, and need not tra-
verse the full BSP tree if an LCTS hit is found. Our technique is a
distant relative of this approach, in that we also compute subsets of
the main acceleration structure during rendering.

3 Exposition

We will begin by identifying some important limitations of EP
search. These are most obvious in the context of BVH data struc-
tures, but they can apply to KD trees as well. Using EP search as a
starting point, we will then derive an improved algorithm which is
more robust with respect to these limitations.

3.1 Limitations of Entry Point Search

EP search is most effective when it can be determined that the en-
tire set of rays is completely covered by large triangles, or when
its bounding frustum is completely inside a closed object. In these
situations, little or no traversal need be performed, because the ma-
jority of the nodes can be shown to be occluded and leaf nodes are
often selected as the entry points. Unfortunately, the former test is
only effective in a limited class of scenes (those containing large,
flat triangles), and the latter requires a more involved tree construc-
tion process, which complicates the implementation and limits its
utility for dynamic scenes. It is also problematic to apply either
test to BVH data structures, which cannot guarantee depth-ordered
traversal, and which do not explicitly represent the empty space in-
side of hollow objects.

In the absence of reliable occlusion detection, all nodes which in-
tersect the frustum must be considered when choosing the entry
point. This severely compromises the effectiveness of EP search,
because it tends to confine the set of possible entry points to the
uppermost levels of the tree. Previous work [Benthin 2006; Fowler
et al. 2009] has observed this effect at work in complex scenes. In
the worst case, any frustum which includes geometry on both sides
of the topmost splitting plane will never benefit from EP search,
despite incurring the overhead of a tree walk. Unfortunately, this
worst case can be very common, as it occurs whenever the viewer
looks towards the center of the model.

Even when occlusion can be considered, there will still exist rea-
sonable scenarios in which an EP search yields no benefit. This can
happen if rays in the frustum strike geometry on opposite sides of
the root splitting plane. A hypothetical example is shown in Figure
2. In this example, both sides of the root node contain intersected
geometry, which forces the root to be chosen as the entry point.

3.2 Re-Thinking Entry Point Search

Paradoxically, in our effort to improve upon EP search, it is most
natural to begin by making it worse. Figure 3 shows a recursive
formulation of EP search. Besides being recursive, this formulation
will visit many more nodes than necessary, and should NOT be used
in practice. We are deliberately describing a suboptimal variant of
EP search, for reasons which will soon be made clear. (For actual
implementation, we follow Reshetov et al. [2005] with a top-down
candidate evaluation inspired by Fowler [2009]).

At each node, we first perform a frustum test against the node’s

Figure 2: An example in which EP search is ineffective. Arrows
denote the boundaries of a bundle of rays. Dashed line denotes
location of topmost splitting plane.

EPSEARCH(Node N, Frustum F)
isect = FrustumTest(N, F)
IF isect == MISS THEN

return NULL;
ELSEIF isect == FULLY_INSIDE THEN

return N;
ELSEIF IsLeaf(N) THEN

return N;
ELSE

L = EPSEARCH(LeftChild(N), F)
R = EPSEARCH(RightChild(N), F)
IF L != NULL and R != NULL THEN

return N;
ELSEIF L != NULL THEN

return L;
ELSE

return R;
END

END
END

Figure 3: A recursive formulation of EP search

bounding box, returning a NULL in the event of a miss. If the node
is hit, and it is a leaf, it is returned as an entry point. Otherwise,
a search is performed recursively on each subtree. If neither sub-
tree contains an entry point, a NULL will be returned. If only one
subtree contains an entry point, then it is returned. If both subtrees
contain entry points, then the parent node is returned, as it is their
lowest common ancestor. Rather than first filling a bifurcation stack
and evaluating the nodes it contains, this approach simply traverses
the tree and propagates entry point nodes up the call stack.

As an aside, we note that one can stop traversing immediately if a
node’s bounding volume is completely contained within the frus-
tum. In this case, it is not necessary to traverse all the way to the
leaves, because we know that every leaf node will eventually inter-
sect the frustum. A test for this case is given by [Assarsson and
Moller 2000] and it may be vectorized as in [Reshetov et al. 2005].
We have not seen this test used in prior work, but we found that it
gives a notable improvement in our EP search implementation.

Consider what happens when only one subtree contains an entry
point. This entry point is propagated up the call stack, bypassing
its ancestors. This will continue to occur until another entry point
is located in a different subtree, at which time their common ances-
tor will replace them as the entry point. These common ancestors
are a superset of the bifurcation nodes used in iterative EP search.
If we examine the set of nodes visited by a traversal of the tree
(as illustrated in Figure 4), what we will generally find is a small
number of bifurcating nodes which contain reachable leaves in both

Figure 4: Sample tree topology. Thin lines indicate parent-child
links in the BVH. Grey circles indicate visited leaves. Grey squares
indicate bifurcation nodes. Hollow circles indicate bypassed nodes.
Bold arrows indicate parent-child links resulting from path com-
pression.

subtrees, seperated by groups of bypassed nodes, which have reach-
able leaves in only one subtree. Each bypassed node has at most one
bifurcating ancestor and descendant, and there are generally many
more bypassed nodes than bifurcating ones.

3.3 Path Compression

The key insight behind our work is that the bypassed nodes are es-
sentially dead weight. For rays in the frustum, only one child of
a bypassed node will ever contain any intersections. Furthermore,
any ray which hits the bypassed node will also hit its bifurcating
parent, and any ray which misses it will also miss its bifurcating de-
scendant. For rays in the frustum, it is therefore possible to traverse
directly from the node’s bifurcating ancestor to its bifurcating de-
scendant without compromising correctness. The bypassed nodes
in the middle do not need to be tested. In fact, they do not even
need to be accessed.

This observation leads us to our new algorithm. Rather than sim-
ply locating the highest possible entry point, we instead construct a
temporary BVH on the fly, optimized for a particular frustum. This
BVH is a subset of the original which stores only the bifurcating
nodes, with direct links to their bifurcating descendants. The root
of this BVH is the same node that would have been returned by an
EP search, and its leaves correspond either to leaves in the original
tree, or to inner nodes whose bounding volumes are fully contained
by the frustum. The paths from root to leaves in this tree are shorter
versions of the corresponding paths in the original tree. We call this
technique path compression (overloading the name of a classical
optimization for union-find data structures [Cormen et al. 2001]).
We refer to the resulting tree as a path compression tree (PC tree).

PC tree construction is surprisingly easy to implement. It can be
done using a simple modification to the recursive EP search, as
shown in Figure 5. At each bifurcating node, rather than discarding
the entry points found in the subtrees, we instead return a new PC
node, with the two entry points as its children. For bypassed nodes,
there is at most one entry point, so we simply propagate the result
upwards. An iterative implementation of path compression is also
possible, and is considerably more complex. We briefly outline the
iterative implementation in Appendix A.

Once we have constructed a PC tree for a given frustum, we can
raytrace against it by traversing it in the same manner as an ordinary
BVH, using any traversal algorithm. When a leaf is reached in the

PATHCOMPRESS(Node N, Frustum F)
isect = FrustumTest(N, F)
IF isect == MISS THEN

return NULL;
ELSEIF isect == FULLY_INSIDE THEN

return new PCNode(N);
ELSEIF IsLeaf(N) THEN

return new PCNode(N);
ELSE

L = PATHCOMPRESS(LeftChild(N), F)
R = PATHCOMPRESS(RightChild(N), F)
IF L != NULL and R != NULL THEN

ret = new PCNode(N);
ret.left = L;
ret.right = R;
return ret;

ELSEIF L != NULL THEN
return L;

ELSE
return R;

END
END

END

Figure 5: Pseudo-Code for Path Compression

PC tree, we begin traversing the original data structure, starting with
the node indicated by the PC leaf. Note that path compression can,
in principle be applied to other data structures than BVHs. In this
case, the original data structure is simply overlaid with a BVH.

3.4 Memory Layout and Management

If the original data structure is a BVH, the PC nodes need only store
a pointer to the original BVH node, along with a pair of child links.
The bounding volume of the original node can be re-used for the PC
node. For other data structures such as KD trees, path compression
can be applied, but the bounding boxes of the bifurcation nodes
must be tracked during PC tree construction and stored explicitly in
the PC nodes.

For high performance, it is critical to use an efficient memory man-
agement strategy for PC tree nodes. All nodes in our implementa-
tion are stored in one contiguous array, and are assigned in sequen-
tial order, as needed. A count is maintained of the number of nodes
in use. Because each tree is assigned a contiguous range of the
array, deallocation of an entire tree can be done by simply decre-
menting the node count (provided the trees are destroyed in reverse
order of construction). If the array becomes full during PC tree
construction, a new one is allocated, and used nodes are copied.
The array size is doubled with each re-allocation, and eventually
stabilizes. In order to enable this reallocation, it is best to store all
node references as relative offsets, instead of pointers. This mem-
ory management scheme all but eliminates allocation overhead, and
it also ensures good cache behavior for the PC nodes.

3.5 Hierarchical Path Compression

Once a PC tree has been built for a particular bounding frustum, it is
possible to refine it further to suit a subset of the frustum. To refine
an existing PC tree, we can simply apply the same algorithm to the
PC tree, creating a new tree which is a subset of the previous one.
If a leaf is reached during PC refinement, path compression should
be re-run on the original BVH, beginning with the node indicated
by the leaf. Note that the test for fully intersected nodes can be
omitted when testing inner nodes in the PC tree. Since these nodes

were not fully contained in the original frustum, they cannot be
fully contained in a subset of it.

Refinement can be done as often as desired, but it eventually be-
comes counter-productive. In our experiments with primary rays,
we tried numerous permutations of initial tile count and splitting
factor. We achieved the best results for 1024x1024 pixel images by
building one PC tree for the entire screen, and refining it by split-
ting into an 8x8 tile grid (256x256 pixels per tile). Each of the
8x8 ”super-tiles” are then split directly into 16x16 pixel ray packets
(which we found to be optimal in our implementation). Different
image resolutions or traversal schemes will naturally benefit from
different tiling strategies, but an 8x8 grid of super-tiles seems to be
a good baseline.

3.6 Multiple Threads

Extending our technique to multiple threads is straightforward. For
multi-threaded rendering, one can simply use a separate node pool
for each thread (dividing super-tiles among threads). Alternatively,
one could also serialize rendering between tiles, using only one PC
tree which is shared among all threads. If memory is plentiful, yet
another option is to pre-compute and store the trees for all tiles, and
have each thread select the appropriate PC tree for the ray packet
being worked on.

4 Results

We have implemented both path compression and EP search, and
present experimental data for fly-throughs in a variety of test scenes,
shown in Figure 1. Unless otherwise noted, all data presented are
averages over a complete fly-through of each scene. Our scenes
include the ubiquitous dragon, two of the BART environments (ex-
cluding the dynamic geometry), and a complex environment from
’Outbound’, a student video game project based on ray tracing.

All experiments were conducted by rendering at 1024x1024 pixels,
using one core of a 1.86GHz Core2 Duo laptop. For BVH traver-
sal, we use our own implementation of [Wald et al. 2007], with a
geometric frustum intersection test [Reshetov et al. 2005] in lieu
of interval arithmetic. We use 16x16 ray packets, which we have
found to be the optimal size in our implementation. To simplify our
code, we use C++ template functions to implement BVH traver-
sal, using a policy based mechanism to control the behavior at leaf
nodes. This makes it possible to traverse both the PC tree and orig-
inal BVH using nearly the same traversal code.

All of our path compression results use hierarchical tiling as de-
scribed in section 3.5. For comparison, we used the same hierar-
chical scheme with EP search. We found that finer tiling with EP
search did not significantly improve the results.

4.1 Traversal Reduction

We begin by examining the number of node traversals required to
trace primary rays in each scene (Table 1). Here we count the num-
ber of times a node is visited when tracing a ray packet, as well
as the number of nodes accessed by EP search or path compres-
sion. As can be seen, PC tree construction will tend to visit many
more nodes than a corresponding EP search would, but this is more
than paid for by the reduction in node visits during raytracing. Nei-
ther path compression nor EP search is particularly effective for the
dragon scene, since the camera is often viewing the entire model
from a distance, and most leaves are reachable. Note that for the
dragon, EP search is counter-productive.

4.2 Performance

Table 2 gives raw performance measurements. The numbers pre-
sented are pure raycasting rates only, and do not include shading or
display. We see that path compression can yield speedups as high
as 88 percent, and that speedups of over 20 percent are routine. In
contrast, we see that simple EP search, while it is occasionally ben-
eficial, is generally of little value.

While our speedups are correllated with the reductions in node
traversals, their magnitudes are not very high. This is due to the
effect of Amdahl’s law. The maximum possible speedup is limited
by the fraction of time spent in BVH traversal, which in our case is
only about 50%. When path compression is used, this figure drops
to about 34%.

Profiling indicates that the vast majority of our time is still spent on
ray packet traversal and intersection testing. PC construction and
EP search are done quite infrequently, and thus add very little over-
head. In more distant viewpoints, where PC provides no benefit,
it also tends to terminate very quickly. Our implementation of EP
search exhibits the same characteristics.

We conducted our experiments using both recursive and iterative
implementations of path compression. We found that while the it-
erative variant executes about 20% faster than the recursive, the rel-
ative cost of path compression is so small that there is no significant
change in frame time.

4.3 Memory Consumption

An important question for our work is the memory footprint of the
PC tree. In Table 3, we present the final sizes of the PC node pools
for each scene, as well as the maximum and average memory re-
quirements (that is, the amount of memory in the pool that was
actually in use on any particular frame). The data are presented rel-
ative to the size of each scene’s BVH, to help place our overhead
in context. We find that the amount of memory consumed by the
PC tree is typically very small, relative to the size of the main data
structure. In addition, memory consumption remains stable across
a variety of scene sizes.

There are two principle reasons why our memory consumption is
so low. The first is the relative scarcity of bifurcating nodes, and
the second is the fact that we terminate PC tree construction when
an entire node is contained in the frustum. This early termination
allows us to avoid the densely populated lower levels, and is impor-
tant in keeping our memory consumption under control.

4.4 Partition Traversal

Overbeck et al. [2008] presented an alternative ray traversal tech-
nique for BVHs, which is more effective for incoherent rays. This
approach divides the rays in a packet into subsets at each visited
node, rather than using early-descent. This trades additional work
at the top portion of the tree for a reduction in work at the lower
levels, because missed rays are prevented from being ’dragged’ to
lower levels of the tree by rays which hit in the higher levels. We
experimented briefly with partition traversal, and found that path
compression yields a much higher performance gain in this case.
Average performance and speedup are shown in Table 4.

Interestingly, we found that because partition traversal does so
much more work per node, it favors a more extreme approach. In
addition to the hierarchical tiling used in previous experiments, we
found that it was also helpful to construct a PC tree for each individ-
ual ray packet prior to tracing it, and to omit the frustum test during
packet tracing. We can reasonably expect to see similar results in a

Traversals Traversals(EP) Traversals(PC) EP Ratio PC Ratio
Dragon 357 356 (2.9) 277 (55) 1.004 0.94
City 199 177 (2.5) 56 (5.7) 0.99 0.31
Kitchen 273 267 (2.2) 88 (12.9) 0.98 0.36
Outbound 394 374 (5.3) 147 (29.2) 0.96 0.44

Table 1: Average traversals, in thousands. Numbers in parenthesis are nodes visited during EP search or PC tree construction.

Reference EP PC EP Speedup (Max) PC Speedup (Max)
Dragon 5.43 5.44 5.50 1.002 (1.06) 1.01 (1.08)
City 8.81 9.01 11.25 1.02 (1.08) 1.28 (1.46)
Kitchen 7.78 7.91 9.57 1.02 (1.23) 1.23 (1.51)
Outbound 6.02 6.04 8.30 1.003 (1.05) 1.38 (1.88)

Table 2: Average packet tracing rates (MRays/s), and speedups. Speedups in parenthesis are the highest observed for a given scene.

Triangles(Thousands) BVH Size (MB) Avg. PC Bytes (%) Max PC Bytes (%) Pool Size (%)
Dragon 871 12.97 0.52 0.98 1.44
City 9.2 0.12 4.11 8.72 9.85
Kitchen 103 1.38 1.30 3.23 3.39
Outbound 644 7.97 0.35 1.22 2.35

Table 3: Memory consumption. PC Tree sizes are given as percentages of BVH size

Partition Partition(PC) Speedup
Dragon 3.63 4.66 1.23
City 4.18 8.58 2.05
Kitchen 3.49 7.53 2.16
Outbound 2.44 5.86 2.40

Table 4: Average packet tracing rates (MRays/s), and speedups for partition traversal.

single-ray implementation. In spite of the impressive performance
gains, early-descent traversal still defeats partition traversal when
path compression is applied. However, there may be some merit to
using PC in conjunction with partition traversal for reflection rays.

5 Future Work

5.1 Other Data Structures

As we have already indicated, path compression, suitably modified,
is compatible with other raytracing data structures than BVHs. KD
trees or bounding interval hierarchices [Wachter and Keller 2006]
are both binary trees in which there is an implicit bounding box
for every node. Path compression can thus be applied to these data
structures as well, and a comparison across the various data struc-
tures would be interesting to study.

5.2 Shadow Rays

While we have shown PC to be beneficial for primary rays, this is
arguably an unconvincing case. It would be desirable to examine
ways that this approach could be applied for secondary rays. We
conducted brief experiments with area light sources in the kitchen
scene, firing one large ray packet at the area light for each rendered
pixel. We had expected to see a performance benefit by performing
a PC pass prior to shooting each ray packet, but this turned out to be
counterproductive. It is clear from these results that path compres-
sion or EP search must be amortized over multiple traversals of the
tree in order to be effective, which concurs with a prediction made
in [Overbeck et al. 2007].

Despite these negative results, there are certain scenarios in which

path compression might be beneficial for shadow rays. For very lo-
calized light sources, such as spot lights or point lights with falloff,
it might be useful to perform path compression using the bound-
ing volume of the light’s region of influence (compressing away
any nodes which do not lie inside). In this way, a tree could be
computed once per frame and re-used for all shadow rays cast from
the light. For shadows which are directly visible from the camera,
the view-frustum partitioning methods which are used for shadow
maps [Zhang et al. 2006] could also be used to build path compres-
sion trees.

5.3 Applications Beyond Raytracing

We find it exciting to consider that our ideas could be generalized
to other algorithms which perform searches on tree structures. Any
problem which involves repeated, coherent queries against a spatial
data structure might benefit from a variant of our path compression
technique. For example, one could imagine a photon mapping im-
plementation which batches photon lookups into spatially coherent
groups, and uses a loose bounding volume of the query points to
compress a KD tree of photon positions. Applications could also
be found in areas outside rendering, such as collision detection or
database search.

6 Acknowledgements

The dragon model was obtained from the Stanford 3D Scan-
ning Repository. The kitchen and city are from [Lext et al.
2001]. Outbound was created by students from NHTV
Breda University of Applied Sciences, and is available at:
http://igad.nhtv.nl/ bikker/downloads.htm.

References

ASSARSSON, U., AND MOLLER, T. 2000. Optimized view frus-
tum culling algorithms for bounding boxes. journal of graphics
tools 5, 1, 9–22.

BENTHIN, C. 2006. Realtime Ray Tracing on Current CPU Archi-
tectures. PhD thesis, Saarland University.

BOULOS, S., WALD, I., AND SHIRLEY, P. 2006. Geometric and
arithmetic culling methods for entire ray packets. Tech. rep.,
University of Utah.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN,
C. 2001. Introduction to Algorithms, Second Edition. MIT Press
and McGraw-Hill.

DMITRIEV, K., HAVRAN, V., AND SEIDEL, H.-P. 2004. Faster ray
tracing with simd shaft culling. Tech. rep., Max Plank Institute
Fur Informatik.

FOWLER, C., COLLINS, S., AND MANZKE, M. 2009. Acceler-
ated entry point search algorithm for real time ray tracing. ACM
Spring Conference on Computer Graphics.

FUSSELL, D., FUSSELL, D., SUBRAMANIAN, K. R., AND SUB-
RAMANIAN, K. R. 1988. Fast ray tracing using k-d trees. Tech.
rep.

HAVRAN, V., AND BITTNER, J. 2000. Lcts: Ray shooting using
longest common traversal sequences. Computer Graphics Forum
19, 59–70.

LAUTERBACH, C., YOON, S.-E., TUFT, D., AND MANOCHA,
D. 2006. Rt-deform: Interactive ray tracing of dynamic scenes
using bvhs. Symposium on Interactive Ray Tracing 0, 39–46.

LEXT, J., ASSARSSON, U., AND MLLER, T. 2001. A benchmark
for animated ray tracing. IEEE Computer Graphics and Appli-
cations 21, 2, 22–31.

OVERBECK, R., RAMAMOORTHI, R., AND MARK, W. 2007. A
real time beam tracer with application to exact soft shadows. In
Eurographics Symposium on Rendering.

OVERBECK, R., RAMAMOORTHI, R., AND MARK, W. R. 2008.
Large ray packets for real-time whitted ray tracing. In IEEE
Symposium on Interactive Ray Tracing.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
level ray tracing algorithm. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Papers, ACM, New York, NY, USA, 1176–1185.

RUBIN, S. M., AND WHITTED, T. 1980. A 3-dimensional rep-
resentation for fast rendering of complex scenes. SIGGRAPH
Comput. Graph. 14, 3, 110–116.

WACHTER, C., AND KELLER, A. 2006. Instant ray tracing: The
bounding interval hierarchy. In In Rendering Techniques 2006
Proceedings of the 17th Eurographics Symposium on Rendering,
139–149.

WALD, I., BENTHIN, C., AND WAGNER, M. 2001. Interactive
rendering with coherent ray tracing. In Computer Graphics Fo-
rum, 153–164.

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Openrt - a
flexible and scalable rendering engine for interactive 3d graphics.
Tech. rep., Saarland University.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray tracing
deformable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph. 26, 1, 6.

YOON, S.-E., CURTIS, S., AND MANOCHA, D. 2007. Ray trac-
ing dynamic scenes using selective restructuring. In SIGGRAPH
’07: ACM SIGGRAPH 2007 sketches, ACM, New York, NY,
USA, 55.

ZHANG, F., SUN, H., XU, L., AND LUN, L. K. 2006. Parallel-
split shadow maps for large-scale virtual environments. In VR-
CIA ’06: Proceedings of the 2006 ACM international conference
on Virtual reality continuum and its applications, ACM Press,
New York, NY, USA, 311–318.

A Iterative Path Compression

Here we briefly outline an iterative algorithm for building path com-
pression trees. The iterative algorithm uses a bifurcation stack sim-
ilar to that used in EP search. Each entry in the stack contains
a pointer to a BVH node, and space for a pair of PC node refer-
ences. The algorithm possesses two distinct phases: A traversal
phase, which walks downwards through a section of the tree, and
a stack contraction phase, which incrementally builds the PC tree
from the bottom up. The algorithm begins in the traversal phase,
and switches to stack contraction whenever a change is made to the
PC tree.

During the traversal phase, stack entries may be added or removed,
and PC nodes may be created and linked to the topmost node in the
stack. There are several cases to consider:

• When a leaf node or fully enclosed inner node is reached, a
PC node is created. If the stack is empty, then this PC node
is the only one in the PC tree, and it is returned. Otherwise,
the PC node is linked to the topmost stack entry, and stack
contraction occurs.

• Otherwise, if exactly one child node is hit by the frustum,
traversal proceeds to that child.

• Otherwise, if both child nodes are hit by the frustum, the
node is tentatively considered a bifurcator, and a new entry
is pushed onto the stack. Traversal proceeds to the left child.

• Otherwise, if neither child is hit, it means that the subtree be-
ing traversed does not contain reachable leaves. This means
that the node at the top of the stack is not a ”true” bifurcator, so
it is popped from the stack, and its linked PC tree (if present)
is moved up to the next stack entry. If the stack becomes
empty, this linked PC tree is returned immediately, otherwise,
stack contraction occurs.

Following any change to the stack, the algorithm enters a stack con-
traction phase. If the topmost entry in the bifurcation stack pos-
sesses two linked PC trees, then these trees are parented to a new
PC node containing the BVH node from atop the stack. The stack
is then popped, and the resulting PC tree is linked to the new stack
top. This continues until one of the following conditions occurs:

• The stack is empty. In this case, the completed PC tree is
returned.

• There is only one PC tree. In this case, the algorithm returns
to the traversal phase, beginning at the right child of the node
atop the stack.

